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Chapter 4 Equation of State

4.1 Introduction
4.1.1  Chapter Content

As discussed in chapters 2 and 3, the momentum equation gives an update on tne flows or velocities from
one node to another, or from one grid point to another, based on a given pressure, flow, mass and enthalpy
distribution. The updated flows are used by the mass and enthalpy equations to update the mass and enthalpy
contents at each location. This information is given to the equation of state to update the pressure
disaibution which, along with the new densities and enthalpies is used by the momenmm equation, and so
on. In this manner, a time history of the tluid evolution is nbtained. Of course, only the main variables are
noted. The numerous and diverse empirical correlations require updates on the main vaniables and many
secondary variables. This information also "flows" around the calculation.

This chapter explores how to get the pressure given information from the governing conservation equations.

4.1.2 Leaming Outcomes

Objective 4.1 | The student should be able te calculate any dependent thermcdynamic property given
any two independent state variables using (a) the steam tables, (b) supplied codes, (c)
supplied curve fits to the steam tables.

Condition Open book written examination.
Standard 100%.

Related Water properties.

concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evaluation -

Weight a a a

Objective 4.2 | The student should be able to develop a flow diagram and pseudo-code for the
calculation of P and T given density and enthalpy.

Condition Open bock written examination.
Standard 100%.

Related The rate form of the equation of state.
concepi(s)

Classification | Knowledge | Comprehension | Application { Analysis | Synthesis | Evaluation

Weight a a ‘a
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Objective 4.3 | The student should be able to explain the pressure and temperature response of a
volume of fluid to perturbations given the F and G functions.

Condition Open book written examination.
Standard 100%.

Related The rate form of the equation of state.
concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evaluation

Weight a a

4.1.3  Chapter Layout

The explorzaticn of the appropriate forms of the equation of state to use for systems analysis begins by
reflecting on the thermodynamics and the iterative method of finding pressure. Next a non-iterative method
is offered as an improvement. This leads naturaily to the water property evaluation. Fast, accurate curve fits
are presented.

4.2 Thermodynamic Properties

From a thermodynamics viewpoint (see, for instance Sears [SEA75], the equation of state of a substance is

a relationship between any four thermodynamic properties of the substance, three of witich are independent.

An example of the equation of state involives pressure P, volume V, temperature T and mass of system:
n(P, V, T, M) =0 (N

If any three of the four properties are fixed, the fourth is determined.

The equation of state can also be written in a form which depends only on the nature of the system and not
on how much of the substance is present, hence all extensive properties are replaced by their corresponding
specific values. Thus

n P, v,T) =0 _ (2)

is the specific value form of the above equation of state, where vis the specific volume. If any two of the
thermodynamic properties are fixed, the third is determined.

From a thermodynamic point of view, the appropriate way to present water properties is by tables or formuia
for each property expressed as a function of the independent parameters P and T, as per Meyer [MEY67 or
Haar {[HARB84] (figure 4.1). Thus given values of pressure and temperature. the calculation of other
thermodynamic properties is usually straightforward. On the other hand, the determination of pressure from
known values of other thermodynamic properties is not direct since interpolation and iteration is required.
Unfortunately, T and P are rarely the independent parameters in system dynamics since the numerical
solution of the conservation equations yield mass and energy as a function of time. Hence, from the point
of view of the equation of state, it is mass and energy which are the independent parameters. Consequently,
system codes are hampered by the form of water property data commonly available.

A key point to note is that the conservation equations are all cast as rate equations whereas the equation of
state is typically written as an algebraic equation. This arises fromn the basic assumption that, although the
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properties of mass, momentum and energy must be traced or solved as a functicn of time and space, the
corresponding local pressure is a pure function of the local state of the fluid. Process dynamics are not
considered. This is the essence of the equilibrium assumption (in a like manner, of course, we invariably use
steady state heat transfer coefficients, etc. in dynamic processes). Historically, this mixture of form arose
because thermodynamics endeavours were concerned with equilibrium states and not with system processes.
System modellers, on the other hand, emphasized system dynamics and used what was available for
constitutive relations. System modellers are more concerned with numerical problems.

But the decisive role of the equation of state in determining system dynamics was recognized early. Paynter
(PAY60] identifies the power throughput as being the most important parameter for system dynamics. Power
is composed cf the product of effort (i.e. force or pressure) and flow. Porsching [POR71] correctly identifies
the important role of flow in his work and by keying the formulation of node-iink networks to flow, stable.
efficient and accurate sclution schemnes result. However, the role of pressure has not received the equivalent
acknowledgement. Although the system dynamics are captured in Persching’s Jacobian, the esser:ce of the
system dynamics is not apparent. Nahavandi [NAH70] comes much closar to recognizing the role of pressure
and explicitly casts the equation of state in rate form. Unfortunately, the system essence is again not
apparent because Nahavandi’s form is very case specific.

Most other popular schemes. for instance, Agee [AGES83], use the algebraic form of the equation of state.
This treatment puts the pressure determination on the same level as heat transfer coefficients. Thus, although
numerical solution of the resulting equation sets give correct answers (to within the accuracy of the
assumption), intuition is not generated and time consuming iterations must be pertormed to get a pressure
consistent with the local state parameters.

We look first at such an iterative scheme and then consider a more efficient alternative (the rate method).

4.3 The Iterative Method

Given the density and enthalpy of a volume of water, the task at hand is to find the associated vaiues of
pressure and temperature. Figure 4.2 shows qualitatively the relation between density, p, and enthalpy, h.
for a given P. Atlow enthalpy, the fluid is single phase liquid and the density is high. As heatis added and
the fluid reaches saturation temperature. vapour is generated to form a two-phase mixture and the density
approaches the vapour density. The curve is well behaved and continuous making it a suitable candidate for
numerical search routines.

We stait the iteration procedure by guessing a pressure. Usuaily in system transient simulation codes. the
value of P at a previous time step is a good choice. Given P we calculate hg, and hy,,,, the saturation
enthalpies for the liquid and vapour phases, respectively. Ifh < b, then the fiuid is single phase liquid. If
h > h,, then the fluid is single phase vapour. Otherwise the fluid is a two-phase mixture with a quality, x

€ [0,1].

The case of two-phase equilibrium is considered first. Subsequently, the equations are extended to cover
single phase and two-phase non-equilibrium fluid.

43.1 Two-Phase Equilibrium Fluid

For two-phase fluid, the density and enthalpy are functions of the pressure and quality. 3ince we know the
density, p, we can estimate the quality (x_,,) for the guessed P (assuming a homogeneous mixture) since:
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vV =

ﬁ = v(P) + x4 v (P) (3)

and thus calculate the enthalpy based on the guessed P:
hcst = hf(P) * xcsl ht'g(P) (4)

T'his estimated value of h will differ from the known value of h. This difference is used to drive the iteration,
ie, to update the guessed pressure as illustrated in figure 4.3:
Ah

i (3h/3P), 3)

The denominator ip equation 5 must be evaluated numerically if analytical expressions are not available.
The pressure is updaied via:
P =P + AP (6)

and the iteration is repeated until the pressure has converged to some tolerance. The temperature is just the
temperature of saturated fluid at that pressure.

43.2 Single-Phase Sub-cooled and Superheated Fluid

For single phase fluid. the density and enthalpy are functions of P and T, ie:
p=p®, T) and h=hP,T) 7

For a guessed P and T, p and h can be found directly from the waier property tables. But this is just an
estimate since P and T are guessed. The true values of p and h lie some distance away and, to a first
approximation, the true values and the estimated values are related by a Taylor’s series expansion:

ap dp
= + /| AT + —Z| AP
P=Pa” 5] ap)T (&)
h = hcs‘ + —a—l—l— AT + -?—ll] AP (9)
T/, o/ -
Defining Ap = p - p, and Ah = h - h,;,, we solve for AP and AT:
a—h Ap ~ @ Ah
dT}), T, ,
AP = (10}
3 1&) RETYRET
dPj, dT p OT)p 0P
ﬂ) Ap - op Ah
dP; . oT/
AT = (11)
) db) _do) o
dT/), dP), &P}, 3T/},
or, more compactly,
AP = G,, Ap + Gy, Ah (12)
AT = G, Ap + G,y Ah (13)
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The G functions are summarized in table 4.2. The derivatives must be evaluated numerically if analytical
expressions are not available.

The pressure and temperature are updated via:
P=P+AP and T =T + AT (14)

and the iteration 1s repeated until the pressure and iemperature have converged to some tolerance.

4.4 The Rate Method

We next consider a scheme (called the Rate Method) that eliminates the need for iteration with 1o loss in
accuracy. The case of two-phase equilibrium is considered first in order to illustrate the method.
Subsequently, the cquations are extended to cover single phase and two-phase non-2quilibrium fluid.

441 Two-Phase Equilibrium

For a two- phase homogeneous mixture we hava:
v = Vf + xvfg (15)
h =By v xhy (16)
where v, = v~ vrand b = h-hy
We wish to relate rates of change of pressure to rates of change in ¢ and h. Specifically, we desire:
X dP dp dh
dP = G,dp + G, dh or el e T e Wi
1P 2 dt Todt * gt a7
since dpfdt and dhfdt (or equivalently, dM/dt and dH/dt) are available from the mass and enthalpy
conservation squations. First concentrating on the case of constant p {or ). to obtain G,, we differentiate
equation (16) 10 gives:

( [oh dh
.d_bl = ..a_h Q = |—f + fg.a_x +x_f5 E (18)
dt op/, dt oP oP ap | dt
Using equation (15), holding v constant (i.e., p = constant):
3 v - vf\ :
ﬂ = —Vfg = - l % + X _a\!fg (19)
dp oPp Vg [OF 0P|
Substituting this into equation (18) gives:
ﬂ = ﬂ‘ + X _ahfg - ..h_f§ ?_f_f + X —avrg Q (20%
dt oaP dP w 9P P dt
or equally:
dp dn
R O L B LAY | S
8| ap ap Elap op (21)
_ vfg dh _ dh

(DENOMINATOR} dt 2 dt
This gives the pressure rate response due to an enthalpy rate change, holding p constant.
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If we repeat the above but holding h constant we find:
dp - h,, dv he, V2 dp _ . dp

‘¢t {DENOMINATOR} dt {DENOMINATOR} dt ' dt

Note that G, and G, are functions that depend only on the local saturation fluid properties and their slopes
at the local pressure.

(22)

Combining equations 21 and 22 to get the total pressure rate response when both h and p are varying:

dP dp ¢h

— =G (P, x) — + G, (P, x) -—.

dt (P90 3 (9 5 (23)
This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the intensive rate

properties, dp/dt and dh/dt, which are obtained from the continuity equations.

Equation 23 can be cast in the extensive form by noting that, since p = M/V and h = HfM,
dp _ 1 dM M dV

dt V4t v? dt (24)
and
dh 1 dH H dM

dt M dt m? dt (25)
Substituting into equation 23 and collecting terras:

ap (G G} am G dH GMav 6)
di v M2 ) dt M dt v o odt -
Afisr some simplification and rearrangement we find:
p AM g dH o4V
dap _ dt dt dt 2n
dt M,F, + M(F;
where:
F, = hgvr - hfvg
F, = Ve T Vg
F, =h - hg
F ah“( ) . (h h
= —=2 (v - v - 5 .
foep 2 T 9p (g = B (28)
dh; Ve
FS = E (Vg - Vr) - —a—I; (hg "‘ hr)
M = xM
M, = (1 X)M.

The F functions are smooth. slowly varying functions of pressure (see appendix 4) provided good curve fits
are used. The latest steam tables [HAAB4] were used to fit saturated properties to less than 1/4% accuracy
using low order polynomials and exponentials [GAR88]. Considerable effort was spent on obtaining
accuracy and continuous derivatives over the full pressure range. The fact that good fits are available means
that the F functions are well behaved which in turn makes the rate form of the equation of state extremely
well behaved, as shown later.

The G functions are also well behaved for the same reasons.
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oh) dp _ dp) dh
~ dT oP dt JT), dt
- = 38
< O g] ) se) o] o
aT), dP), aPJ. aT/,

which is the intensive form we desire.

The extensive form is obtained as for the two-phase equilibrium case.

Equations (24) and (25) are

substituted into equations (37) and (38) and after rearrangement we find:

dM dH dv
F.. — + F.. —~ + F__ ..
dP _ LR ® q; ® % (39)
dt M, Fp + M Fg
and
pdM o dH oo gV
dT _ T 4t T T 40
dt M Fyr + MFp
where
dh d
Fp=p 2—) -h —'e']
oT/, aT) .
dp
F. = -2F
2P at] .
ap)
F = ---p2 —_—
*F aT/,
Y
’ F,, = 0 tor subcooled, = _(_1_9_] Uh) - Qg) @-] for superheated
r 0T aT /), 4P/,
Fop = dp| ch) -Q—- d— for subcooled = 0 for superheated
oP), oT/,
) ah 3p (41}
Fip = -h ==
6 T}
.- _Q_,e]
- ot} ;
dh
F.. = o
it - TP BT]
Faq = ~Fp
Fq = ~Fg
M, = mass of vapour phase = 0 for subcooled, = M for superheated
M, = mass of liquid phase = M for subcooled = 0 for superheated
4.4.3 Two-Phase Non-Equilibnum

« el
e
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The rate form for the equation of state for the two-phase non-equilibrium case is a simple extension of the
single-phase non-equilibrium case. The liquid and vapour phases are treated independently to give:

dP, v dpy x dhy
—— = G —_ G [E——
dt ST ® (42)
dT, v dpy v dh,

= _t G? -
dt T de Todt (43)

where k represents either ¢ or v for the liquid or vapour phases respectively. In general, the 6 equation mode!
(3 coatinuity equations for each phase) would be used for the general unequal temperature, unequal velocity,
unequal pressure situation. Thus dp,/dt and dh,/dt are available to the rate form of the equation of state.

The expressions for the F and G functions are summarized in tables 4.1 and 4.2. These expressions cover
the fuil range from sub-cooled liquid to superheated steam.

45 H,O Property Fits

To facilitate the calculation of water properties, the 1984 standard tables were accurately curve fitted as
discussed in detail in appendix 4. These fitted functions are supplied in the files HHOPROP.FOR and
H2OPROP.C for user convenience. These FORTRAN and C functions cover a wide range of pressures and
temperatures and should be sufficient for most nuclear reactor simulations, with the exception of severe
accidents that generate extreme conditions. These functions are fast and more than accurate encugh given
the other errors in system simulation {GAR88, GARS9, GAR92).

The basic overall approach taken in the curve fitting task was that, since the more difficult region to fit was
the transition from single to two-phase and since most power plants operate at or near this region, careful
attention would be paid the phase transition region at the expense of accuracy away from the saturation line,
if necessary. Thus, the first major step was to accurately fit the saturation lines. Then, since density,
enthalpy and other properties vary more swrongly with T than with P (as shown in figure 4.4), the property
in question, say density, would be calculated based on the deviation from the saturation value at the given
T, te:
o~ ap
p(P.T) = p_(T) + > (P - Psas(T)) (44)
T

Figure 4.5 illustrates the strategy. It should be obvious by now that not only the properties need to be fitted

but the slopes are needed as well. Both the properties and the slopes of the properties must be free of
discontinuities if numerical searches are to converge.

The supplied code is divided into 3 levels:
- Level I: the fitted functions
- Level 2: derived functions and collections of functions (for convenience)
- Level 3: logic sorter and manager

Details on these routines are given at the end of appendix 4. It is instructive to study appendix 4 in
conjunction with the supplied code (WATERA.FOR, PROPA.FOR, H2OPROP.FOR).

Having derived the desired rate forms for the equation of state. we proceed to chapter 5 to illustrate the utility
of the approach, as indicated in the Introduction.
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4.6

l.

Exercises

Using the spread sheei macros for Microsoft Excel supplied by G.R. McGee (as per the memo at the
end of this chapter, calculate and plot the density, enthalpy, quality and void fraction for a range of
pressures ( 1 to 100 atmospheres) and temperatures(50 °C to 350 >C). Make sure you cover the
subcooled, saturated and superheated ranges.

Using the supplied code, WATERA.EXE:

a. Calculate p and h for P=10 MPa and T=300 °C. Increase the temperature in steps to s2e the
approach to two-phase.

b. Using p and h slightly different than that found in (a), calculate P and T.

c. Practice calculating p given h and P.

Using the supplied skeleton code NODE.C:

a. Fill in the missing code required to caiculate P and T given p and h.

b. Use the code to calculate AP and AT when a node experiences a AM, a2 AH or a AV.
Compare your answers to WATERA EXE.

c. Use the code to calculate AP and AT when a node experiences a Ap and a Ah. Compare
vour answers to WATERA.EXE.
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Table 4.1 Summary of the F functions for the rate form of the equation of state
Case F, F, F, F, Fs
2¢ equilibrium .
(all derivatives b v - Iy v h an, 0y, . dh; v v, ]
along saturation T e fg fe op 3P & P % 3p &
line)
1¢ non- 0 subcooled ap] ah] ap] ah]
g . —-1-4- —_— = r— ——
e o) ) | ) o) foe) on) gy aw op)eoT)e 7T 2,
- aT/, cT/p T/, oT jpt ¢P /)4 “)TJP T}, aP) . subcooled
superheated 0 superheated
1¢ non- dh 3 3 3h
equilibrium p ‘é‘ﬁ] - h a—g) - *a—gj -p? '5[;] -Fe - Fg,
temperature T T T T
Table 4.2 Summary of the G functions for the rate form of the equation of state
Case G, G,
2¢ equilibrium h, v? Ve
(all derivatives :
along saturation v dhg, . x EE‘_r& b m i}l’g v a_hr % ﬂ'g “h a_""f . %
line) | ap gP | ®|op P | op op| ®|ap oP
1¢ non-equilibrium dh _dp
pressure 5-17 ) é‘f ,
) o) o) o) ) 2n) _op) oh
oT j, 8P}, aTj, aP], P /. 0P/, aT), dP},
1¢ non-equilibrium dh dp
temperature P ' ar T
i] .?L] @] oh) 9p) dh) _ap) oh
oT ), aP )., oPj, 0T/, o1 ), 0P ), 3P). aT/,
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Figure 4.1 P-v-T surface for water.

Figure 4.2 Numerical search for P given p and k for a two-phase mixture.
oy P
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Figure 4.3 Error correction scheme for pressure in two-phase.
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Figurc 4.4 Density vs. pressure at various temperatures in subcooled water.
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@7 = el + d
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Figure 4.5 Basis for curve fitting in the subcooled region.
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