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Chapter 4 Equation of State
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4.1 Introduction

4.1.1 Chapter Content

As discussed in chapters 2 and 3, the momentum equation gives an update on the flows or velocities from
one node to another, or from one grid point to another, based on a given pressure, flow, mass and enthalpy
distribution. The updated flows are used by the mass and enthalpy equations to update the mass and enthalpy
contents at each location. This inbrmation is given to the equation of state to update the pressure
discribution which, along with the new densities and enthalpies is used by the momenrum equation, and so
on. In this man:ler, a time history of the tluid evolution is obtained. Ofcourse, only the main variables ""e
noted. The numerous and diverse empirical correlations require updates on the main variables and many
secondary variables. TIlls information also "flows" around the calculation.

This chapter explores how to get the pressure given intormation from the governing conservation equatiop.s.

4.1.2 Learning Outcomes

Objcctive 4.1 The student should be able to calculate any dependent thenncdynamic p~operty given
any two independent state variables using (a) the steam tables. Ib) supplied codes, (c)
supplied cw-ve fits to the steam tables.

Condition Open book written examinarion., .

Standard 100%.

Related Water properties.
concept(s)

Classification Knowledge Comprehension Application Analysis S~·nthesis Evaluation

Weight a a a

Objective 4.2 The studcnt should be able to develop a flow diagram and pseudo-code for the
calculation of P and T given density and enthalpy.

Condition Open book written examination.

Standard 100%.

Related The rate fonn of the equation of state.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a
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Objective 4.3 The student should be able to explain the pressure and temperature response of a
volume of fluid to perturbations given the F and G functions.

Condition Open book written examination.

Standard 100%.

Related The rate form of the equation of state.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a

4.1.3 Chapter Layout

Tne exploration of the appropriate forms of the equation of state to use for systems a.'1alysis begins by
reflecting on the thermodynamics and the iterative method offmding pressure. Next a non-iterative method
is offered as an improvement. This leads naturally to the water property eValuation. Fast, accurate curve fi,S
are presented.

4.2 Thermodynamic Properties

From a thermodynamics viewpoint (see, for instance Sears (SEA75], the equation ofstate of a substance is
a relationship between any four thermodynamic properties ofthe substance, three ofwhich are independent.
An example of the equation of state involves pressw'e P, volume V, temperature T and mass of system:

) 1I(P,V, T,M)=0 (1)

If any three of the four properties are fixed, the fourth is determined.

The equation of state can also be written in a form which depends only on the nature of the system and not
on how much of the substance is present, hence all extensive properties are replaced by their corresponding
specific values. Thus

1I (P, v, T) = 0 (2)

is the specific value form of the above equation of state, where vis the specific volume. If any two of the
thermodynamic properties are fixed, the third is determined.

From a thermodynamic point ofview, the appropriate way to present water properties is by tables or formula
for each property expressed as a function of the independent parameters P and T, as per Meyer [MEY67 or
Haar [HAR84] (figure 4.1). Thus given values of pressure and temperature, the calculation of other
thermodynamic properties is usually straightforward. On the other hand, the determination ofpressure from
known values of other thermodynamic properties is not direct since interpolation and iteration is required.
Unfortunately, T and P are rarely the independent parameters in system dynamics since the numerical
solution of the conservation equations yield mass and energy as a function oftime. Hence, from the point
ofview of the equation of state, it is mass and energy which are the independent parameters. Consequently,
system codes are hampered by the form of water property data commonly available.

A key point to note is that the conservation equations are all cast as rate equations whereas the equation ot"
~.J state is typically wrillen as an algebraic equation. This arises from the basic assumption that, although the

, "'-:~

D:\TEACH\Tbai-IITS2\cluop4.""?8 o..cc.ber 2&.1991 IU""



Equation o[State 4-3

properties of mass, momentum and energy must be traced or solved as a function of time and space, the
corresponding local pressure is a pure function of the local state of the fluid. Process dynamics are not

;,- considered. lbis is the essence ofthe equilibrium assumption (in a like manner, ofcourse, we invariably use
::-:'~:}

,-j:}; steady state heat transfer coefficients, etc. in dynamic processes). Historically, this mixture of form arose
because thermodynarr.ics endeavours were concerned with equilibrium states and not with system processes.
System modellers, on the other hand, emphasized system dynamics and used what was available for
constitutive relations. System modellers are more concerned with numerical problems.

But the decisive role ofthe equation ofstate in deterrn;ning system dynamics was recognized early. Paynter
[PAY60] identifies the power throughput as being the most important parameter for system dynamics. Power
is composed cf!he product ofetTurl (i.e. force or pressure) and flow. Porsching [POR71] correctly identifies
the important role uf flow in his work and by keying the formulation of node-link networks to flow, stable.
efficient and ::.ccurate sclution schemes result. However, the role ofpressure has not received the equivalent
acknowledgement. Although the system dynamics are captured in Porsching's Jacobian, the e~sc"ce of the
system dynamics is not apparent. Nahavandi [NAH70] COP.les much clos~rto recognizing the role ofpressure
and ~xplicitly casts the equation of sta'e in rate form. Unfortunately, the system essence is again not
apparent because Nahavandi's form is very case specific.

Most other popular schemes. for instance, Agee [AGES3], use the algebraic form of the equation of state.
lbis treatment puts the pressure d~terminationon the same level as heat transfer coefficients. Thus, although
numerical solution of the rcmlting equation sets give correct answers (to within the accuracy of the
assumption), intuition is not generated and time c0nsuming iterations must be performed to get a pressure
consistent with the local state parameters.

We look first at such an iterative scheme and then consider a more efficient alternative (tile rate method).

4.3 The Iterative Method

Given the density and enthalpy of a volume of water, the task at hand is to find the associated values of
pressure and temperature. Figure 4.2 shows qualitatively the relation between density, p, and enthalpy, h.
for a given P. At low enthalpy, the fluid is single phase liquid and the density is high. As heat is added and
the fluid reaches saturation telliperature. vapour is generated to f0rm a two-ph"se mixture and the density
approaches the vapour density. The curve is well behaved and continuous making it a suitable candidate [or
numerical search routines.

We st3.lt the iteration procedure by guessing a pressure. Usually in system transient simulation codes. the
value of P at a previous time step is a good choice. Given P we calculate h,.., and h",,, the saturation
enthalpies for the liquid and "apour phases, respectively. lfh < n,..,then rhe fluid is single phase liquid. If
h> h.... then the fluid is single phase vapour. Otherwise the fluid is a two-phase mixture with a quality. "
E [0,1].

The case of two-phase equilibrium is considered first. Subsequently, the equations are extended to cover
single phase and two-phase non-equilibrium fluid.

·U.l Two-Phase Equilibrium Fluid

For two-phase fluid, the density and enthalpy are functions of the pressure and quality. Since we know the
density, p, we can estimate the quality (x,,,) for the guessed P (assuming a homogeneous mixture) since:
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(3)

and thus calculate the enthalpy based on the guessed P:
h,,, = hIP) + ",,, h,lP) (4)

(5)IlP =

fhi" estimated value ofh will differ from the known value ofh. This diff~renceis used to drive the iteration.
ie, to update the guessed pressure as illustrated in figure 4.3:

Ilh

The de'lominator in equation 5 must be evaluated numerically if analytical expressions are not available.
The pressure is updated via:

P = P + IlP (6)

and the iteration is repeated until the pressure has converged to some tolerance. The temperature is just the
temperature of saturated fluid at that pressure.

4.3.2 Single-Phase Sub-cooled and Superheated Fluid

For single phase fluid. the density and enthalpy are functions ofP and T. ie:
p = p(P, n and h = h(P, T) (7)

For a guessed P and T, p and h can be found directly from the water property tables. But this is just an
estimate since. P and T are guessed. The true values of p and h lie some distance away a..'ld, to a first
approximation, the true values and the estimated values are related by a Taylor's series expansion:

P = P,,, + ap
) ~T + ap

) ~P (8)
aT r ap T

h = h + ah) IlT + ah) l'iP
'" aT ap·P T

(9)

Defining l'ip = P - p,,, and Ilh = h - 11,,,. we solve for ~P and IlT:

l'iP

IlT

iJh) ~
aT p

P

ap ) dh)
ap T dT p

ah) Il
ap p

T

ap ) dh)
aT p dP T

_ apI l'ih
aTlp

ap ) ah)
ap T aT p

( 10)

(II)

or, more compactly.

(12)

( 13)
. _.-J

D;\TEACH\Tb.i·HTS2\cb.~ ....1'& December 21. 1997 1~.3~



Equation o[Slate 4-5

The G functions are summarized in table 4.2. The derivatives must be evaluated numerically if analytical
expressions are not available.

The pressure and temperature are updated via:
p = p + ~p and T = T + ~T (14)

and the iteration is repeated until the pressure and temperature have converged to some tolerance.

4.4 The Rate Method

We next consider a scheme (called the Rate Method) that eliminates the need for iteration with lIO loss in
accuracy. The case of two-phase equilibrium is considered fust in order to illustrate the method.
Subsequently, the ~qua!ions are extended to cover single phase and two-phase non-~quilibrililllfluid.

4.4.1 Two-Phase Equilibrium

For a two-phase homogeneous mixture we have:
v = vr + xV fg

h = hr + xhr•

(15)

( 16)

where v,." v,- v, and 11,-. ~ ~ - 11,-.

(19)

(18)

(17)

+ x avrg ].
ar

+ x ahrg ] dP .
ap dt

= __I [avr
vr• arar

dx

dP

We wish to relate rates of change of pressure to rate~ of change in p a:ld h. Specifically, we desire:

dP = GlOP + G
2
dh or dP = G op + G, dh

dt I dt - dt

since dp/dt and dh/dt (or equivalently, dM/dt and dH/dt) are available from the mass and enthalpy
conservation equations. First concentrating on the case of constant p (or v). to obtain G" we differentiate
equation (16) to gives: .

dh II ah) dP rahr h ax
dt = ap p dt = lap + rg ap

Using equation (IS), holding v constant (i.e., p = constant):

a( v:r.vr)

Substituting this into equation (18) gives:

dh = {ahr + x ahr•
dt ap ap

av, ]}
+ x ap'

dP

dt
(20\

or equally:

dP

dt
+ x ahrg ] _ h [avr

ap rg ap
+ x aa~g]}

dh

dt

(21 )

vr• dh _ G dh
{DENOMINATOR} dt - 2 dt

1b.is gives the pressure rate response due to an enthalpy rate change, holding p constant.
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If we repeat the above but holding h constant we fmd:

dP h d h v2
_ = - fg -.y- = fg dp = G dp (22)
dt {DENOMINATOR} dt {DENOMINATOR} dt 'dt

Note that G, and G, are functions that depend only on the local saturation fluid properties and their slopes
at the local pressure.

Combining equations 21 and 22 to get the total pressure rate response when both h and p are varying:

dP = G, (P, x) dp + G
2

(P, x) ~h . (23)
dt at dt

This is the rate form of the equation of state for two-phase equilibrium fluid in tenns of the intensive rate
properties, dp/dt and dhfdt, which are obtained from the continuity eqmtions.

Equation 23 can be cast in the extensive form by noting that, since p = M/V and h = HIM,
dp I dM ~ dV
dt V dt V 2 dt

(24)

and
dh

dt

I (lH
~ ---

M elt

H dM---
M 2 dt

(25)

(27)

(26)
G,M dV

V' dt

dP
dt

Substituting into equation 23 and collecting tenils:

dP = ( G, _ G2 H) dM + G, dH
dt V M' cit M dt

After Some simplification and rearrangement we find:

F dM • F dH + F
J

dV
'dt 2 dt dt

where:

Jv
-v)--'(h

f JP ,
aVf- vf) - - (h,ap

(28)

The F functions are smooth. slowly varying functions ofpressure (see appendix 4) provided good curve fits
are used. The latest steam tables [HAA84] were used to fit saturated properties to less than 1/4% accuracy
using low order polynomials and exponentials [GAR88]. Considerable effort was spent on obtaining
accuracy and continuous derivatives over the full pressure range. The fact that good fits are available means
that the F functions are well behaved which in turn makes the rate form of the equation of state extremely
well behaved, as shown later.

The G functions are also well behaved for the same reasons.
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(38)

ap ) dh
aT T dt

ap ) ah)
ap. T aT p

ah) dp
ap T dtdT

dt ap ) dh)
aT p dP T

which is the intensive fonn we desire.

The extensive fonn is obtained as for the two-phase equilibrium case.
substitUled into equations (37) and (38) and after rearrangement we fmd:

F dM + F dH + F dV
d P IP d t 2P d t 3P d t

dt M,F.p + M,F,p

Equations (24) and (25) are

(39)

and

dT

dt

F dM
IT dt

" dH F+io.2T-+ 3T
dt

dV

dt

(41 )

o for superheated

~) dh) for superheated
aT p dP T

= 0 for subcooled, = d P) ah)
DP T aT p

= dP) Ch) _ap) dh) for subcooled
ap T aT p aT) p dP T

Clh) hap)
p a1~ p aT p

-~~L
ah)

- p aT T

- F.p

- F,p

M, = mass of ,·apour phase = 0 for subcooled, = M for superheated

M, = mass of liquid phase = M for subcooled = 0 for superheated

where

F ,P

F2P

F3P
.,

j

F.p

F,p

FIT

F1T

F3T

F4T

Fn

-1.4.3 Two- Phase Non- Equilibrium
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The rate form for the equation of state for the two-phase non-equilibrium case is a simple extension of the
single-phase non-equilibrium case. The liquid and vapour phases are treated independently to give:

dP. • dP. • dh•
• _1 - G ,P - + G2P - (42)
,~ dt dt dt

dT. • dP. • dh.
- G T - + G, - (43)dt 1 dt _T dt

where k represents either Qor v for the liquid or vapour phases respectively. In general, the 6 equation model
(3 continuity equations for each phase) would be used for the general unequal temperature, unequal velocity,
unequal pressure situation. Thus dpJdt and dhJdt are available to the rate form of the equation of state.

The expressions for the F and G functions are summarized in tables 4. I afie 4.2. These expressions cover
L'1e fun range from sub-cooled Equid to superheated steam.

4.5 H20 Property Fits

To facilitate the calculation of water properties, the 1984 standard tables were accurately curve fitted as
discussed in detail in appendix 4. These fitted functions are suppEcd in the files H20PROP.FOR and
H20PROP.C for user convenience. These FORTRAN and C functions cover a wide range ofpressures and
temperatures and should be sufficient for most nuclear reactor simulations, with the exception of severe
accidents that generate extreme conditions. These functions are fast and more tl,an accurate eneugh given
the other errors in system simulation [GAR88, GAR89, GAR92].

The basic overall approach taken in the curve fitting task was that, since th" more difficult region to fit was
the transition from single to two-phase and since most power plants operat" at or near this region, careful
attention would be paid the phase transition region at the expense ofaccuracy away from the saruration line,
if necessary. Thus, the first major st"p was to a~curately fit the saturation lines. Then, since density,
"nthalpy and other properties vary more strongly with T than with P (as sho"n in figure 4.4), the property
in question, say density, would be calculated based on the deviation from the saruration value at the give"
T, ie:

p(P,T) = PSaI(T) + ~~) l -P".(T)) (44)

Figure 4.5 illustrates the strategy. It should be obvious by now that not only the properties need to be fitted
but the slopes are r.eeded as well. Both the properties and the slopes of the properties must be free of
discontinuities if numerical searches are to converge.

The supplied code is divided into 3 levels:
- Level I: the fitted functions
- Level 2: derived functions and collections of functions (for convenience)
- Level 3: logic sort,," and manager

Details on these routines are given at the end of appendix 4. It is instructive to study appendix 4 in
conjunction with the supplied code (WATERA.FOR, PROPA.FOR, H20PROP.FOR).

Having derived the desired rate forms for the equation ofstate, we proceed to chapter 5 to illustrate the utility
of the approach, as indicated in the Introduction.
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4.6 Exercises

4-10

l. Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per the memo at the
end of this chapter, calculate and plot the density, enthalpy, quality and void fraction for a range of
pressures ( I to 100 atmospheres) and temperatures(50 °C to 350 'C). Make sure you cover the
subcooled, saturated and superheated ranges.

)'

'., '.­
~ •• '!;,.-

2. Using the supplied code, WATERA.EXE:
a. Calculate p and h for P=IO MPa and T=300 °C. Increase the temperature in steps to sec the

approach to two-phase.
b. Using p and h slightly different than that found in (a), calculate P and T.
c. Practice calculating p given h and P.

3. Using the supplied skeleton code NODE.C:
a. Fill in the missing code required to calculate P and T given p and h.
b. US" the code to calculate IlP and IlT when a node experiences a 11M, a :>H or a !lV.

Compare your answers to WATERA.EXE.
c. Use the code to calculate IlP and 11T when a node experiences a IIp and a Ilh. Compace

your answers to WATERA.EXE.
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Table 4.1 Summary of lhe F functions for the rate form of the equation of slate

Case F, F, F, F. F,

2cjl equilibrium
ilh. _ ~v. h ah r aVr(all derivatives h. vr - "rv. vr• " vfg - vfg aP h"along saturation r. al' apr. al'

line)

Icjl non- 0 subcooled ~p) ah) a p) ah)
equilibrium P T aT I'

-

ah ) I dP ) a
p

) , ah ) a p ) ah) afJ ) ah) a aT I' al' T
pressure

p aT p - 1 21' P aT p
- p aT p 21' T aT p aT p al' T subcooled

superheated 0 superheated

Icjl non-

p :~ L-h :~L a
p

) _ , ah )
equilibrium

al' T p al' - F4P - F,l'
temperature T

Table 4.2 Summary of the G functions for the rate form of the equation of slate

Case G, G,

2q, equilibrium h v'
i

rg vrg
(all derivatiws

{ [ahr• ah r.] [avl' aav~'l } {v [ahr + x 2h~] _ h [avr + x avr.]}along saturation
vr• al' +x-- -h - + x

line) dl' r. al' r. al' ap I. al' al'

Icjl non-equilibrium
ah) a

p
)pressure aT p

I -aT l'

[:~L:~L-:~L:fL] [ a
p

) ah) a
p

) ah) 1
al' T al' p aT p al' T

Icjl non-equilibrium
ah) -~~Ltemperature al' 0'

op) ah) a p) ~oT·l a p ) ah) a p) ah)
aT p aI' T - al' T aT p al' T ill' T aT pI l'
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Figure 4.3 Error correction scheme for pressure in two-phase.
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Figure 4.4 Density vs. pressure at various temperatures in subcooled water.

O:ITEACH\Thai·HTS2'dro.p4."'l'8 O«:cmber lI. 1997 I~.H



Equation ofSlate 4-14
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Figure 4.5 Basis for curve fitting in the subcooled region.
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